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Abstract

This paper presents new sufficient conditions for the oscillation of
all proper solutions of the first order linear difference equation with
delay argument

Au(k) + p(k)u(r(k)) =0, k€N,

where Au(k) = u(k+1) —wu(k), p: N — Ry, 7: N — N and

i lim 7(k) = +oo. Examples illustrating the results are given. It is to
k—--00

be pointed out that this is the first paper dealing with the oscillatory
behaviour of the equation in the case of a general delay argument 7(k).
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1 Introduction
Consider the first order linear difference equation with delay argument

Au(k) + p(k)u(r(k)) =0, ke N, (E)

where Au(k) =u(k+1)—u(k),p: N— R, 7: N — N and kﬁli’l k) =
+00.
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Strong interest in equation (E) is motivated by the fact, that it repre-
sents a discrete analogue of the delay differential equation (see [12] and the
references cited therein) '

z'(t) +p)z(7(t)) =0, p(t)>0, 7(t)<t for t>0.

By a proper solution of Eq.(E) we mean a function v : N,, — R, ny =
min{7(k) : kK € Np.}, N, = {n,n +1,...} which satisfies Eq.(E) on N, and
sup{|u(i)| : ¢ > k} > 0 for k € N,,,.

A proper solution u : N — R of Eq.(E) is said to be oscillatory (around
zero) if for every positive integer n there exist ni,m; € N,, such that
u(ni)u(ng) < 0. Otherwise, the solution is said to be non-oscillatory. In
other words, a proper solution u is oscillatory if it is neither eventually pos-
itive nor eventually negative.

In the last few decades the oscillation theory of delay differential equations
has been extensively developed. The oscillation theory of discrete analogues
of delay differential equations has also attracted growing attention in the re-
cent few years. In particular, the problem of establishing sufficient conditions
for the oscillation of all solutions of the equation

Au(k) + p(k)u(k —n) =0, ke N (E,)

has been the subject of many recent investigations. See for example [2-11,
13-16] and the references cited therein.

In 1989, Erbe and Zhang [6], proved that, if p(k) > 0, then either one of
the following conditions

- n"
or
k
limsup » p(i) > 1 (1.2)
k—+o0 i=k—n

implies that all solutions of Eq.(E;) oscillate.
In the same year, Ladas, Philos and Sficas [9], proved that the same
conclusion holds if p(k) > 0 and

n

lim inf (% ki p(i)) > (Tfl)—nﬂ (1.3)

i=k—n
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It is interesting to establish sufficient conditions for the oscillation of all
solutions of Eq.(E;) when the conditions (1.2) and (1.3) are not satisfied.
Many researchers focused on the improvement of the upper bound of the
ratio u(k — n)/u(k) for possible non-oscillatory solutions u of Eq.(E;). In
1993, Yu, Zhang and Qian [16], and Lalli and Zhang [10], trying to improve
(1.2) established some false oscillation conditions due to the fact that both
were based on an erroneous discrete version of the Koplatadze-Chanturia
lemma [8]. For more details the reader is referred to [5,3].

In 1995, Stavroulakis [14], proved that if

n+1 042
) and limsupp(k) >1— —
k—+o0 4

k-1
y -— lim i 1) <
0< a: lir—r»l.:&f ; p(i) < (

n+1

then all solutions of Eq.(E;) oscillate.

In 1999, Domshlak (5], and in 2000, Cheng and Zhang [3], established the
following lemmas respectively, which may be looked upon as discrete versions
of Koplatadze-Chanturia lemma [8].

Lemma 1.1 ([5]) Assume that u is an eventually positive solution of Eq.(E;)
and that

k-1
Z p(t) > a>0 forlarge k.
i=k—n
Then
o2
u(k) > —u(k —n) for large k. (1.4)

4

Lemma 1.2 (/3]) Assume that u is an eventually positive solution of Eq.(E;)

and that
k-1

p(i) >a>0 for large k.
i=k—n
Then
u(k) > a"u(k —n) for large k. (1.5)

In 2004, Stavroulakis [15], based on the above two lemmas, established
the following theorem.
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Theorem 1.1 ([15]) Assume that

k-1 n n—+1
O<a: _hllﬂ’j{'gz_kzn (n—i—l) .
Then either one of the conditions
o2
lim su >1—— 1.6
k—‘+oop i—-zn ) 4 ( )
or
lim sup Z (1) >1—a™ (L.7)
k—+oo i=k—n

implies that all solutions of Eq.(E,) oscillate.
In 2006, Chatzarakis and Stavroulakis [2], established the following lemma.

Lemma 1.3 ([2]) Assume thatu is an eventually positive solution of Eq.(E;)

and that
k-1

Z p(i) > a>0 forlarge k.
i=k—mn
Then
- l k 1.8
u(k) > mu(r’c— n) for large k. (1.8)

Based on the above lemma, they established the following theorem.
Theorem 1.2 ([2]) Assume that

k—1 " n+1
and
OJ2
imp 3 560>1- 755 Y

Then all solutions of Eq. (E;) oscillate.

In this paper, the authors improve the upper bound of the ratio w(7 (k)) /u(k+
1) for possible non-oscillatory proper solutions u of Eq.(E) and derive new
sufficient oscillation conditions. It is to be emphasized that this is the first
paper dealing with the oscillatory behaviour of Eq.(E) in the case of a general
delay argument 7(k).
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2 Oscillation Criteria for Eq. (E)

In this section we first establish two lemmas which will be used in the proof
of our main results.
Consider the difference inequality

Au(k) + q(k)u(c(k)) <0, ke N, (2.1)
where
g:N—R,, 0:N— N and klim o(k) = +oo. (22)
— 400
Lemma 2.1 Let
k-1
l{iﬁmjnf p(i) = a >0, (2.3)
i=1’(k)

o(k) <7(k) <k -1, p(k)<q(k) for keN (2.4)

and u : N, — (0,+00) be a positive proper solution of (2.1) for a certain
no&N. Then Eq.(E) has a proper solution u. : N,, — (0, +00) such that

0 < us(k) < ul(k) for k€N, (2.5)
where ny > ng s a sufficiently large natural number.

Proof. Let u: N,, — (0,400) be a positive proper solution of (2.1).
By (2.2) and (2.3), it is clear that there exists n; € N, such that

k—1
u(o(k)) >0 and Z p(i) >0 for ke N,,. (2.6)
i=7(k)
From (2.1), we have
u(k) =Y q(i)u(o(i)) for ke N,,. (2.7)
i=k

Assume that n, = min{7(k) : k¥ € N,,,} and consider the sequence of func-
tions u; : N, — R (i =1,2,...} defined as follows

uy (k) = w(k) for k€ N,.,

+oo
28] = Z_;p(i)uj_l(’r(i)) for ke N, 2.8)
u(k) for k€ [n,n) (1=23,...).
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By (2.4), (2.7) and using the fact that the function u is nonincreasing, we
have

us(k) = Zp(i) u1(7(7)) < Zq(i) u(o (1)) < u(k) = ui(k) for k> ny.
i=k i=k
Thus
uj(k) <wujq(k) for ke N, (j=2,3,...). (2.9)

Denote lim wu;(k) = u.(k) (according to (2.9) this limit exists). Therefore,
j—+oo

from (2.8), we get

u.(k) = > p(i)uu(r(3)) for ke N,,. (2.10)

i=k

Now, we will show that u,(k) > 0 for & > n;. Assume, for the sake of
contradiction, that there exists ny > n; such that u.(k) = 0 for k € N,
and u.(k) > 0 for £ € [n4,n3). Denote by N* the set of natural numbers n
for which 7(k) = ny and n* = min N*. By (2.10) and (2.4) it is clear that
n* 2 ny. Therefore, if ¢ = min{w.(7(7)) : 7(n*) <i<n*—1} > 0, by (2.4)
and (2.6), we have

wng) = 3 p (@) > 3 p)ulr@) e 3 pi) >0,
i=nz i=r(n") i=r(n*)

which, in view of u.(ng) = 0, leads to a contradiction. Therefore, u,(k) > 0
for k = .

Hence Eq.(E) has a proper solution wu, satisfying 0 < wu.(k) < u(k) for
k € Ny,. The proof is complete.

Lemma 2.2 Assume that u is a positive proper solution of Eq.(E), where

p:N—R,, 7:N— N is nondecreasing function,
() <k=1, for k€N, lim 7(k) = +oo (211)
and
k-1
léminf (i) = a € (0,1]. (2.12)
TS
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Then

A=\ 2
lim sup (k) € (1 i a) ; (2.13)
k—+co U(k -+ 1) o
If, additionally, p(k) > 1 — /1 — « for large k, then
, uw(t(k)) l—ao++v1l-«a
| < : 2.14
PP T o

Proof. By (2.12), it is clear that, for any ¢ € (0,a) there exists
ng = ng(e) € N such that

k-1

p(i) >a—c for k& Ny,. (2.15)
k)

=7

—

Since u is a positive proper solution of Eq.(E), then there exists n; € N,
such that
w(t(k)) >0 for k € Ny,.

Thus, from Eq.(E), we have
u(l +1) — u(k) = ~p(k) u(r()) < 0

and so u is an eventually nonincreasing function of positive numbers.
From (2.15), it is clear that, if w € (0, — &), there exists k* > k such
that

k*—1 k*
D_p(i) <w and 3 p(i) > w (2.16)

This is because in the case where p(k) < w, it is clear that, there exists
k* > k such that (2.16) is satisfied, while in the case where p(k) > w, then
k* = k, and therefore

k*—1 k-1 k* k
Z p(i) = Zp(i) (by which we mean) =0 < w and p(i) = Zp(z') = p(k) >w.
i=k i=k i=k i=k
That is, in both cases (2.16) is satisfied. Thus
k-1 k*—1 k*—1
3 ili= 3 = s e
i=7(k*) i=7(k*) i=k
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Now, summing up Eq.(E) first from k to k* and then from 7(k*) to k — 1,
and using the fact that the function u is nonincreasing and the function 7 is
nondecreasing, we have

u(k) - u(k® + 1) Zp( (Zp ) ) 2 w u(r(k))

" u(k) > u(k™ + 1) +wu(7 (k%)) (2.17)
and then
fei k-1
u(T(k*)—u(k) = Y p(i) u(r()) > ( > P(i)) u(7(k-1)) > [(a—e)—w]u(r(k—1))
i=7(k*) i=7(k*)
u(r (k")) = u(k) + [(o — &) — wju(r(k — 1)). (2.18)

Combining inequalities (2.17) and (2.18), we obtain
u(k) > w(k™ 4+1) + wlu(k) + (& — &) — w)u(r(k — 1))]
or
u(k) = WU(T(/& ~1)). (2.19)
Observe that the function f : (0, &) — (0,1) defined as

wl(a—e) - u

flw): = (2.20)

1—w

attains its maximum at w =1 — /1 — (a — ¢), which is equal to

frax = (1= /1= (aegz-:))z_

Thus, forw=1- /1 - (a—¢) € (0,a — &) inequality (2.19) becomes

w(k) > (1- m)z (== 1))

or

“(ngk") D) (1 i “;:ia_ 6)) (2.21)
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and, for large k&, we have

u(r(k)) _ (1—!—1/1H(a~5))2‘

u(k +1) a—¢
Hence, )
lim sup u(7(k)) < 1+ +/1—(a—e¢)
k—too U(k +1) oa—c

which, for arbitrarily small values of ¢, implies (2.13).
Next we consider the particular case where p(k) > 1 — /1 — .
In this case, from Eq.(E) we have

u(k) = u(k +1) + p(k) u(t(k)) > (1 — V1 — a)u(r(k)). (2.22)

Now, summing up Eq.(E) from 7(k) to & — 1, and using the fact that the
function w is nonincreasing and the function 7 is nondecreasing, we have

k— k-1
u(7(k))—u(k) = Z ( 2. P(i)) w(7(k=1)) Z (a—e)u(r(k—1))

i=7(k)

or
uw(T(k)) = u(k) + (o — €) u(r(k — 1)). (2.23)
Combining inequalities (2.22) and (2.23), we obtain

u(k) 2 (1= V1= a)u(k) + (@ - e)u(r(k — 1))]

u(r(k — )) l-a++y1-«a
u® = afao) .
and, for large k,
(’r(k)) 1— o+ m
u(k + 1) oo —¢)
Hence
R u(T (k)) l—a++V/1-«a
ktoo Uk + 1) ala—e)

The last inequality, for arbitrarily small values of e, implies (2.14). The proof
is complete.
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Theorem 2.1 Assume that 7(k) < k and

o(k) =max{7(s): 1<s<k, seN} (2.25)
If .
limsup Y p(i) > 1, (2.26)
BoH00 k)

then all proper solutions of Eq.(E) oscillate.

Proof.  Assume, for the sake of contradiction, that ug : N,y — (0, +00)
is a positive proper solution of Eq.(E).
Since the function o is nonincreasing and o(k) = max {7(s) : 1 < s <
k, se N } then, for sufficiently large k € N, uo satisfies the following
inequality
Aug(k) + p(k) uo(c(k)) < 0.

Summing up the last inequality from o (k) to k, and using the fact that the
function ug is nonincreasing and the function ¢ is nondecreasing, we have

wa(a(h) :Z(‘L) p)-1) <o

Therefore, for sufficiently large k

which contradicts (2.26). The proof is complete.

Remark 2.1 In the special case of Eq.(Ey) the above condition (2.26) leads
to the condition (1.2) presented in [6].

Theorem 2.2 Assume that
k—1
lim inf p(i) = a € (0,1] (2.12)

k— 400
i=7(k)

162



and

lim sup Z p(i)>1—(1-v1-@a)", (2.27)
k—+o00
i=o(k)
where
o(k)=max{r(s):1<s<k, seN}. (2.25)

Then all proper solutions of Eq.(E) oscillate.
If, additionally, p(k) > 1 — /1 — « for large k, and

k
1—+/1-
lim sup Z i ol

)p(i) il — B o (2.28)

k—+o0 j—a(k

then all proper solutions of Eq.(E) oscillate.

Proof. We will first show that

k—1
lim inf Z{k p(i) = a. (2.29)

—+o0
)

Indeed, since 7(k) < o(k), then by (2.12), it is obvious that

k-1 k-1
o A & Tom N _
lim 1nf. p(i) < lilililgg -} p(i) = a. (2.30)

Thus, there exists a subsequence {k;};-% of natural numbers such that &; T
+oo for i — +oo and

k-1 k;—1
liminf 3 p(i) = lm > p(5). (2.31)
i=a (k) j=c (ki)

On the other hand, from the definition of the function ¢ and taking into

account that klim 7(k) = +oo for any k; (¢ = 1,2,...) there exists k; < k;
— 400

such that o(k) = o(k;) since k; < k < k;, _ﬁE’l ki = 400, and o(k) = 7(k})
(1= 1; 2+ )« Ehus

ki—1 ki—1 ki—1 ki—1
SoopG)= D )= > ()= Y p(H). (2.32)
J=o(k;) g=o(k;) j=o(k!) J=7(k})
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Combining inequalitites (2.31) and (2.32), we obtain

k-1 k—1
o o 1 s oy
lér_r’li{.lof 2 p(i) > Iélil_:ilof A_E(k) p(i) = a. (2.33)

The last inequality together with (2.30) imply (2.29).

Now assume, for the sake of contradiction, that w is a positive proper
solution of Eq.(E). Then, for sufficiently large &, the function u is a positive
proper solution of

Au(k) + p(k)u(o(k)) < 0.

By Lemma 2.1, the equation
Au(k) + p(k)u(a(k)) =0 (2.34)

has a positive proper solution u. : N,, — (0,+0c0), where ng € N is suffi-
ciently large.
Since (2.29) is satisfied, inequality (2.13) becomes

ra— ) (1+m)z

k—+00 U*(k o 1) - (o7

(2.35)

or, if p(k) > 1—+/1 — « for sufficiently large k, then inequality (2.14) becomes

, u(o(k)) 1l—a++/1—a
lim sup = .
k— o0 u*(k + 1) a?

(2.36)

In the case that (2.35) holds, for any € € (0, (1—+/1 — «)?) and for sufficiently
large k, we have

u(k+1) > (1 = vV1—a)? —e)u.(o(k)). (2.37)

Now, summing up Eq.(2.34) from o(k) to k, and using the fact that the
function u. is nonincreasing and the function ¢ is nondecreasing, we have

w0 (k) 2wk + 1)+ | D p(i)) u. (0 (k)). (2.38)

i=c(k)
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Combining inequalities (2.38) and (2.37), we obtain

us(o(k)) > ((1 —V1- a)2 —e+ Z p(i)) us(o(k)).

i=a(k)

Hence

lim sup Z p(i) <1—(1-v1- Oz)z—l-s1

s BT
which, for arbitrarily small values of £, becomes
k
lim sup Z p(i) <1—-(1-vV1- 04)2.

k—+c0 i=erfl)

This, contradicts (2.27).
In the case that (2.36) holds, following a similar procedure, we are led to
the inequality

which contradicts (2.28). The proof is complete.

Remark 2.2 If o > 1, by (2.8), it is obvious, that the conditions of Theorem
2.1 are satisfied and therefore all proper solutions of Eq.(E) oscillate.

Corollary 2.1 Assume that

k-1 - n+1
;= limi ) <
Par =lnig 2. P0= ()
and "
& ; 2
lim sup Z p(H)>1—-(1-v1-0a)" (2.27)
k——+oo ikt

Then all proper solutions of Eq.(Eq) oscillate.
If, additionally, for sufficiently large k, p(k) > 1 —+/1—c, and

k
l1—+1—«o
Eaesn i 5 e s e T 2.98'
m sup > () — (2.28')

i=k—n

then all proper solutions of Eq.(E;) oscillate.
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Now we present an example in which the condition (2.27") of the above
Corollary is satisfied, while none of the conditions (1.2), (1.3), (1.6), (1.7)
and (1.9), is satisfied.

Example 1 Consider the equation
z(k +1) — z(k) + p(k)z(k - 12) =0, £=0,1,2,..,

where

35 35 6
1200° p(13k+13) = —+—, k=0,1,2,....

1200 10’
Here n =12 and it is easy to see that

k—1 13
a—hmmf Z p(7) 39 (1—2-) 2 (0.3532

p(135+1) = 5. = p(18k+12)=

= P T I00 T\ 13
lim sup Z ——+E—0950
k—oo imk—12 100 ].0
and
lim su Z e e o D B = [l T ) VO
o = 1200 T 1000 = et

We see that the condition (2.27°) of Corollary 2.1 is satisfied and therefore
all solutions oscillate. Observe, however, that

0.9791 < 1,

19\ 13
a=0.35< (E) =~ (0.3532,

o
0950 < 1- i 0.9693,

0.950 < 1 — &' ~ 0.9999,

and
2

(8%
0950 < 1 — ——> — ~ 0.9628.
ST 3e—a)

Therefore none of the conditions (1.2), (1.3), (1.6), (1.7) and (1.9), is sat-
isfied.
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Theorem 2.3 Assume that « € (0, 1] and there exist ng € N and a function
D € Lioe(R4+, Ry) such that

t2p(t) is nondecreasing function, p(i) < p(¢) for i € Ny, (2.39)

and
k—1

lim inf p(s)ds > a. (2.40)
ot Jrk)-1
Then condition (2.27) (or, if for sufficiently large k, p(k) > 1 — /1 —q,
condition (2.28)) is suffictent for all proper solutions of Eq.(E) to oscillate.

Proof. In view of Lemma 2.1 and Theorem 2.2, to prove Theorem 2.3,
it sufficies to show that

l’icm inf p(i) > a. (2.41)

By (2.39) and (2.40), we have

G—=1)2_ [ ds _ e i—1 [ _
) [ G2 Y [ Aeds>

k-1 k-1

>op@) = Y

i=7(k) 1=7(k) 1=7(k)
#(k)—1 &= / _ (k) — 1 /‘H _
—_— pls)ds = p(s)ds. (2.42
7(k) mz(;) i—1 (=) 7(k) Jrk)-1 (s) ( )

Since 7(k) — 400 for k — +oo, inequality (2.42), in view of (2.40), implies
(2.41). The proof is complete.

Corollary 2.2 Consider Eq.(E) and let ¢ € (0,4+00), f € (0,1), cInf > -1
and for large k

p(k) 2 2, (k) < [BH]
and "
lim sup Z p(e) >1—-(1-v1- 05)2,
AR T

where o = In B¢ and [Bk] denotes the integer part of Bk. Then all proper
solutions of Fq.(E) oscillate.
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Proof. Take p(t) = ¢ and o = In 57°. Then it is easily shown that the
conditions of Theorem 2.3 are satisfied.

Analogously, if we take p(t) = 5%, we have the following

Corollary 2.3 Consider Eq.(E) and let ¢ € (0,+00), 8 € (0,1), clnf8 > —1

and for large k
c

p(k) 2 71— (k) < [F]

and %
lim sup Z pi) >1—-(1-vV1- a)z,
k—+o0 i=[kF)

where a = In ¢ and [kP] denotes the integer part of k®. Then all proper
solutions of Eq.(E) oscillate.
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